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1. Introduction

In the last few years there has been an increasing activity in calculating the Hawking

radiation [1, 2] by means of anomalies. This renewed attention to the relation between

anomalies and Hawking radiation was pioneered by the paper [3], which was followed by

several other contributions [4 – 41]. In [3] the method used was based on the diffeomorphism

anomaly in a two-dimensional effective field theory near the horizon of a radially symmetric

static black hole. The argument is that, since just outside the horizon only outgoing modes

may exist, the physics near the horizon can be described by an effective two-dimensional

chiral field theory (of infinite many fields) in which ingoing modes have been integrated out.

This implies an effective breakdown of the diff invariance. The ensuing anomaly equation

can be utilized to compute the outgoing flux of radiation.

A different method, based on trace anomaly, had been suggested long ago by Chris-

tensen and Fulling, [42]. This method provides a full solution only in two dimensions,

the reason being that its utilization involves the region away from the horizon, where a

two-dimensional formalism does not provide a good description. The method has been

reproposed in different forms in [43, 44] and, in particular, [7] and [9]. In this paper we

would like to discuss a few aspects of the trace anomaly method and its implications. In [7]

the authors made the remarkable observation that the full spectrum of the Planck distri-

bution of a thermal Hawking radiation of a Schwarzschild black hole can be described by

postulating the existence, in the two-dimensional effective field theory near the horizon, of

higher spin currents and applying a generalization of the trace anomaly method. These

authors in subsequent papers fully developed this method for fermionic currents. In this
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paper we do the same for bosonic higher spin currents. This allows us to clarify, first of all,

that the higher spin currents necessary to reproduce the thermal Hawking radiation form

a W∞ algebra. We then covariantize the higher spin currents, according to the method

proposed in [9], but, differently the latter reference, we do not find any trace anomaly in

the higher spin currents. This prompts us to analyze the nature of these anomalies. Using

consistency methods we find that the trace anomalies of ref. [9] are cohomologically trivial.

This means that they are an artifact of the regularization employed.

2. W∞ algebra and Hawking radiation

Let us review the argument that allows us to evaluate the outgoing radiation from a

Schwarzschild black hole starting from the trace anomaly of the energy-momentum tensor

(we closely follow [7]). Here we assume the point of view, advocated by several authors [43,

44] and in particular in [3], that near-horizon physics is described by a two-dimensional

conformal field theory (see also [46, 45]). Due to the Einstein equation, the trace of the

matter energy momentum tensor vanishes on shell. However it is generally the case that

the latter is nonvanishing at one loop, due to an anomaly: Tα
α = c

24π
R where R is the

background Ricci scalar. c is the central charge of the matter system. This is no accident,

in fact it is well-known that the above trace anomaly is related to the cocycle that pops

up in the conformal transformation of the (holomorphic or anti-holomorphic part of the)

energy momentum tensor. If the matter system is chiral, this cocycle also determines the

diffeomorphism anomaly (which we do not consider in this paper).

In light-cone coordinates u = t− r∗, v = t+ r∗, let us denote by Tuu(u, v) and Tvv(u, v)

the classically non vanishing components of the energy-momentum tensor. Given a back-

ground metric gαβ = eϕηαβ , the trace anomaly equation (together with the conservation

equation) can be solved. It yields

Tuu(u, v) =
c

24π

(

∂2
uϕ − 1

2
(∂uϕ)2

)

+ T (hol)
uu (u) (2.1)

where T
(hol)
uu is holomorphic, while Tuu is conformally covariant. I.e., under a conformal

transformation u → ũ = f(u)(v → ṽ = g(u)) one has

Tuu(u, v) =

(

df

du

)2

T̃ũũ(ũ, ṽ) (2.2)

Since, under a conformal transformation, ϕ̃(ũ, ṽ) = ϕ(u, v) − ln
(

df
du

dg
dv

)

, it follows that

T
(hol)
ũũ (ũ) =

(

df

du

)

−2
(

T (hol)
uu (u) +

c

24π
{ũ, u}

)

(2.3)

Regular coordinates near the horizon are the Kruskal ones, (U, V ), defined by U = −e−κu

and V = eκv. Under this transformation we have

T
(hol)
UU (U) =

(

1

κU

)

−2 (

T (hol)
uu (u) +

c

24π
{U, u}

)

(2.4)
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Now we require the outgoing energy flux to be regular at the horizon U = 0 in the Kruskal

coordinate. Therefore at that point T
(hol)
uu (u) is given by cκ2

48π
. Since the background is

static, T
(hol)
uu (u) is constant in t and therefore also in r. Therefore cκ2

48π
is its value also at

r = ∞. On the other hand we can assume that at r = ∞ there be no incoming flux and

that the background be trivial (so that the vev of T
(hol)
uu (u) and Tuu(u, v) asymptotically

coincide). Therefore the asymptotic flux is

〈T r
t 〉 = 〈Tuu〉 − 〈Tvv〉 =

cκ2

48π
(2.5)

Now let the thermal bosonic spectrum of the black hole, due to emission of a scalar

complex boson (c = 2), be given by the Planck distribution

N(ω) =
2

eβω − 1
(2.6)

where 1/β is the Hawking temperature and ω = |k|. In two dimensions the flux moments

are defined by

Fn =
1

4π

∫ +∞

−∞

dk
ω kn−2

eβω − 1

They vanish for n odd, while for n even they are given by

F2n =
1

4π

∫

∞

0
dωω2n−1N(ω) =

2(−1)n+1

8πn
B2nκ2n (2.7)

where Bn are the Bernoulli numbers (B2 = 1
6 , B4 = − 1

30 , . . .). Therefore the outgoing

flux (2.5) is seen to correspond to F2. The question posed by the authors of [7] was

how to explain all the other moments. They suggested that this can be done in terms of

higher tensorial currents. In other words the Hawking radiation flows to infinity carried

by higher tensor generalizations of the energy-momentum tensor, which are coupled to

suitable background fields that asymptotically vanish and do not back react.

The authors of [7, 9] used mostly higher spin currents bilinear in a fermionic field. They

also suggested an analogous construction with other kinds of fields, and briefly discussed the

case of a scalar bosonic field. In the following we would like to carry out the construction

of higher spin currents in terms of a single complex bosonic field (c = 2). More explicitly,

we will make use of the W∞ algebra constructed by Bakas and Kiritsis long ago, [47]. To

this end we go to the Euclidean and replace u, v with the complex coordinates z, z̄.

2.1 The W∞ algebra

Following [47] (see also [48 – 50]) we start with free complex boson having the following two

point functions

〈φ(z1)φ(z2)〉 = − log(z1 − z2) (2.8)

〈φ(z1)φ(z2)〉 = 0

〈φ(z1)φ(z2)〉 = 0
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The currents are defined by

j(s)
z...z(z) = B(s)

s−1
∑

k=1

(−1)kAs
k :∂k

z φ(z)∂s−k
z φ(z) : (2.9)

where

B(s) = qs−2 2s−3s!

(2s − 3)!!
(2.10)

and

As
k =

1

s − 1

(

s − 1

k

)(

s − 1

s − k

)

(2.11)

They satisfy a W∞ algebra. The first several currents are

j(2)
zz = − :∂zφ∂zφ : (2.12)

j(3)
zzz = −2q

(

:∂zφ∂2
zφ : − :∂2

zφ∂zφ :
)

j(4)
zzzz = −16q2

5

(

:∂zφ∂3
zφ : −3 :∂2

zφ∂2
zφ : + :∂3

zφ∂zφ :
)

j(5)
zzzzz = −32q3

7

(

:∂zφ∂4
zφ : −6 :∂2

zφ∂3
zφ : +6 :∂3

zφ∂2
zφ : − :∂4

zφ∂zφ :
)

j(6)
zzzzzz = −128q4

21

(

:∂zφ∂5
zφ : −10 :∂2

zφ∂4
zφ : +20 :∂3

zφ∂3
zφ : −10 :∂4

zφ∂2
zφ : + :∂5

zφ∂zφ :
)

Normal ordering is defined as

:∂nφ∂mφ : = lim
z2→z1

{

∂n
z1

φ(z1)∂
m
z2

φ(z2) − ∂n
z1

∂m
z2
〈φ(z1)φ(z2)〉

}

(2.13)

As usual in the framework of conformal field theory, the operator product in the r.h.s. is

understood to be radial ordered.

The current j
(2)
zz (z) = − :∂zφ(z)∂zφ(z) : is proportional to the (normalized) holomor-

phic energy-momentum tensor of the model and, upon change of coordinates z → w(z),

transforms as

:∂zφ∂zφ : = (w′)2 :∂wφ∂wφ : −1

6
{w, z} (2.14)

where {w, z} — the Schwarzian derivative — is

{w, z} =
w′′′(z)

w′(z)
− 3

2

(

w′′(z)

w′(z)

)2

(2.15)

The non covariant contribution comes from the second term in (2.13). We have (see

e.g. [51])

:∂z1φ(z1)∂z2φ(z2) : = ∂z1φ(z1)∂z2φ(z2) − ∂z1∂z2 〈φ(z1)φ(z2)〉 (2.16)

= w′(z1)w
′(z2)∂w1φ(w1)∂w2φ(w2) − ∂z1∂z2 〈φ(z1)φ(z2)〉

= w′(z1)w
′(z2) :∂w1φ(w1)∂w2φ(w2) : −G(z1, z2)
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where ∂z1φ(z1)∂z2φ(z2) stands for the radial ordered product of the two operators, and

G(z1, z2) = −w′(z1)w
′(z2)∂w1∂w2 〈φ(w1)φ(w2)〉 + ∂z1∂z2 〈φ(z1)φ(z2)〉

= −∂z1∂z2

(

〈φ(w(z1))φ(w(z2))〉 − 〈φ(z1)φ(z2)〉
)

=
w′(z1)w

′(z2)

(w(z1) − w(z2))2
− 1

(z1 − z2)2
(2.17)

In the limit z2 → z1 (2.17) becomes 1
6 {w, z1}.

We are interested in the transformation properties of currents j(s)(u) when w(z) is

w(z) = −e−κz (2.18)

Analogously to (2.16), we have

j(s)
z...z(z1) =

(

B(s)

s−1
∑

k=1

(−1)kAs
k :∂k

z1
φ(w(z1))∂

s−k
z2

φ(w(z2)) :

)

+ 〈X〉 s (2.19)

where

〈Xs〉 = B(s)

s−1
∑

k=1

(−1)kAs
k lim

z2→z1

{

〈∂k
z1

φ(w(z1))∂
s−k
z2

φ(w(z2))〉 − 〈∂k
z1

φ(z1)∂
s−k
z2

φ(z2)〉
}

= lim
z2→z1

B(s)

s−1
∑

k=1

(−1)kAs
k∂

k
z1

∂s−k
z2

{

〈φ(w(z1))φ(w(z2))〉 − 〈φ(z1)φ(z2)〉
}

= lim
z2→z1

B(s)

s−2
∑

k=0

(−1)k+1As
k+1∂

k
z1

∂s−k−2
z2

∂z1∂z2

{

〈φ(w(z1))φ(w(z2))〉 − 〈φ(z1)φ(z2)〉
}

= B(s)
s−2
∑

k=0

(−1)kAs
k+1 lim

z2→z1

∂k
z1

∂s−k−2
z2

G(z1, z2)

= B(s)
s−2
∑

k=0

(−1)kAs
k+1Gk,s−k−2 (2.20)

and Gm,n are coefficients in the series

G(z + a, z + b) =

∞
∑

m,n=0

ambn

m!n!
Gm,n (2.21)

We now evaluate coefficients for the transformation (2.18). Putting (2.18) in (2.17) we

obtain

G(z1, z2) = G(z1 − z2) = − 1

(z1 − z2)2
+

κ2

4

1

sinh2 κ(z1−z2)
2

(2.22)
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This gives1

Gm,n = (−)n+1κm+n+2 Bm+n+2

m + n + 2
(2.23)

So, we obtain

〈Xs〉 = (−)s−1(4q)s−2κs Bs

s
(2.24)

We have used
s−2
∑

k=0

As
k+1 =

(2s − 2)!

(s − 1)!s!
(2.25)

(2.24) is a higher order Schwarzian derivative evaluated at w(z) = −e−κz. It plays

a role analogous to the r.h.s. of (2.5). In the next section we will compare it with the

radiation moments in the r.h.s. of (2.7).

2.2 Higher moments of the black hole radiation

Let us now return to the light-cone notation. We identify j
(2)
uu (u) up to a constant2 with

the holomorphic energy momentum tensor

j(2)
uu (u) = −2π T (hol)

uu (2.26)

Similarly we identify j
(s)
u...u, with s lower indices, with an s-th order holomorphic ten-

sor. They can be naturally thought of as the only non-vanishing components of a two-

dimensional completely symmetric current. In analogy with the energy-momentum tensor,

we expect that there exist a conformally covariant version J
(s)
u...u of j

(s)
u...u. The latter must

be the intrinsic component of a two-dimensional completely symmetric traceless current

J
(s)
µ1...µs , whose only other classically non-vanishing component is J

(s)
v...v.

Now let us apply to these currents an argument similar to the one in section 2 for the

energy-momentum tensor, using the previous results from the W∞ algebra. Introducing

the Kruskal coordinate U = −e−κu and requiring regularity at the horizon we find that, at

the horizon, the value of j
(s)
u...u is given by 〈Xs〉 in eq. (2.24). Next j

(s)
u...u(u) is constant in t

and r (the same is of course true for j
(s)
v...v). Therefore, if we identify j

(s)
u...u(u) with j

(s)
z...z(z)

via Wick rotation, 〈Xs〉 corresponds to its value at r = ∞. Since j
(s)
u...u(u) and J

(s)
u...u(u)

asympotically coincide, the asymptotic flux of this current is

− 1

2π
〈J (s)r

t...t〉 = − 1

2π
〈J (s)

u...u〉 +
1

2π
〈J (s)

v...v〉 = − 1

2π
〈Xs〉 =

is−2

2πs
κsBs (2.27)

1Note that

−

1

x2
+

κ2

4

1

sinh2 κx
2

=
d

dx

„

1

x

„

1 −

κx

eκx
− 1

««

=
d

dx

 

1

x

 

1 −

∞
X

n=0

Bn

(κx)n

n!

!!

= −κ
2

∞
X

n=2

(n − 1)Bn

(κx)n−2

n!
= −κ

2
∞
X

n=0

Bn+2

n + 2

(κx)n

n!

2We relate j
(2)
uu with the energy momentum tensor via the factor of 2π and the minus sign. This is because

in the Euclidean we want to conform to the conventions and results of [47], where properly normalized

currents satisfy a W∞ algebra. This holds for higher order currents too: for physical applications their W∞

representatives must all be divided by −2π.
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provided we set the deformation parameter q to the value − i
4 (for the global −2π factor,

see the previous footnote).

The r.h.s. vanishes for odd s (except s = 1 which is not excited in our case) and

coincides with the thermal flux moments (2.7) for even s.

It remains for us to show that the covariant conserved currents J
(s)
µ1...µs can be defined.

3. Higher spin covariant currents

To start with, it is natural to suppose that the covariant currents appear in an effective

action S where they are sourced by asymptotically trivial background fields B
(s)
µ1...µs (in [52]

they were called ‘cometric functions’), i.e.

J (s)
µ1...µs

=
1√
g

δ

δB(s)µ1...µs
S (3.1)

In particular B
(2)
µν = gµν/2. We assume that all J

(s)
µ1...µs are maximally symmetric and

classically traceless.

In order to find a covariant expression we first recall that the previous W∞ algebra is

formulated in terms of a (complex, Euclidean) chiral bosonic field. The action of a chiral

(Minkowski) scalar in 2D coupled to background gravity can be found in [54]. When the

background gravity is of the type considered in this paper, i.e. gαβ = eϕηαβ , the action

boils down to that of a free chiral boson, [53]. In other words, the equation of motion of a

chiral boson coupled to background conformal gravity is

∂vφ = 0 (3.2)

This simplifies the covariantization process.

To proceed with the covariantization program we then reduce the problem to a one-

dimensional one. We consider only the u dependence and keep v fixed. In one dimension

a curved coordinate u is easily related to the corresponding normal coordinate x via the

relation ∂x = e−ϕ(u)∂u. We view u as u(x), assume that all j
(s)
u...u and their W∞ relations

refer in fact to the flat x coordinate (i.e. x corresponds to the Euclidean coordinate z used

in the previous section) and by the above equivalence we extract the components in the

new coordinate system. For instance for a scalar field φ:

∂n
x φ = e−nϕ(u)∇n

uφ, i.e. ∂n
xφ (dx)n = ∇n

uφ (du)n

We recall that the W∞ currents are constructed out of bilinears in φ and φ̄:

j(n,m)
u...u = :∂n

uφ∂m
u φ : (3.3)

We split the factors and evaluate one factor in u1 = u(x + ǫ/2) and the other in u2 =

u(x − ǫ/2). We expand in ǫ and take the limit for ǫ → 0. Afterward we restore the

tensorial character of the product by multiplying it by a suitable enϕ(u) factor. We use in

particular the Taylor expansion, see [9],

u(x + ǫ) = u(x) + ǫ e−ϕ − ǫ2

2
e−2ϕ ∂uϕ + . . .

– 7 –
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According to the recipe just explained, the covariant counterpart of j
(s)
u...u should be

constructed using currents

J (n,m)
u...u = e(n+m)ϕ(u) lim

ǫ→0

{

e−nϕ(u1)−mϕ(u2)∇n
u1

φ∇m
u2

φ − cn,m~

ǫn+m

}

(3.4)

where cn,m = (−)m(n + m − 1)! are numerical constants determined in such a way that

all singularities are canceled in the final expression for J
(n,m)
u...u . Therefore (3.4) defines the

normal ordered current

J (n,m)
u...u = :∇n

uφ∇m
u φ : (3.5)

We use

∇u∇n
uf(u, v) = ∂u∇n

uf(u, v) − nΓ∇n
uf(u, v)

for a scalar field f(u, v), where

Γ = ∂uϕ

and

:φ(u1)φ(u2) := φ(u1)φ(u2) + ~ log(u1 − u2) (3.6)

After some algebra we obtain

J (1,1)
uu =

~

6
T + j(1,1)

uu (3.7)

J (1,2)
uuu =

~

12
(∂uT ) − ΓJ (1,1)

uu + j(1,2)
uuu

J (2,1)
uuu =

~

12
(∂uT ) − ΓJ (1,1)

uu + j(2,1)
uuu

J (1,3)
uuuu =

~

20

(

∂2
uT
)

+
~

30
T 2 − J (1,1)

uu T − 3

2
Γ2J (1,1)

uu − 3ΓJ (1,2)
uuu + j(1,3)

uuuu

J (2,2)
uuuu =

~

30

(

∂2
uT
)

− ~

30
T 2 − Γ2J (1,1)

uu − ΓJ (1,2)
uuu − ΓJ (2,1)

uuu + j(2,2)
uuuu

J (3,1)
uuuu =

~

20

(

∂2
uT
)

+
~

30
T 2 − J (1,1)

uu T − 3

2
Γ2J (1,1)

uu − 3ΓJ (2,1)
uuu + j(3,1)

uuuu

where

T = ∂2
uϕ − 1

2
(∂uϕ)2 (3.8)

In appendix one can find analogous expressions for order 5 and 6 currents.

Using eq. (2.12), and similarly, J
(2)
uu = −J

(1,1)
uu , J

(3)
uuu = −2q

(

J
(1,2)
uuu − J

(2,1)
uuu

)

, J
(4)
uuuu =

−16q2

5

(

J
(1,3)
uuuu − 3J

(2,2)
uuuu + J

(3,1)
uuuu

)

, etc., we obtain

J (2)
uu = j(2)

uu − ~

6
T (3.9)

J (3)
uuu = j(3)

uuu

J (4)
uuuu = j(4)

uuuu − 8~

15
q2T 2 − 32

5
q2TJ (2)

uu

J (5)
uuuuu = j(5)

uuuuu − 160

7
q2TJ (3)

uuu
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For s = 6 we have

J (6)
uuuuuu =

(

−512~

63
T 3 +

160~

63
(∂uT )2 − 128~

63
T∂2

uT − 512

3
T 2J (2)

uu − 256

21
T∇2

uJ (2)
uu

−256

21

(

∂2
uT
)

J (2)
uu +

640

21
(∂uT )∇uJ (2)

uu − 1280

21
ΓT∇uJ (2)

uu − 1280

21
Γ2TJ (2)

uu

+
1280

21
Γ (∂uT ) J (2)

uu

)

q4 − 160

3
q2TJ (4)

uuuu + j(6)
uuuuuu (3.10)

It is important to verify that our previous definitions are consistent. Using the trans-

formation law for j
(2)
uu (i.e. (2.14))

j(2)
uu (u) = (w′(u))2 j̃(2)

ww(w(u)) +
~

6
{w, u} (3.11)

and its generalization for j
(4)
uuuu which can be read out of (2.19)

j(4)
uuuu(u) = (w′(u))4 j̃(4)

wwww(w(u)) + q2(w′)2
32

5
j̃(2)
ww(w(u)) {w, u} + ~q2 8

15
{w, u}2 (3.12)

and using

ϕ(u, v) = ϕ̃(w(u), v) + log(w′(u)) (3.13)

it can be checked that J
(2)
uu and J

(4)
uuuu transform indeed as tensors

J (2)
uu (u) = (w′(u))2J̃ (2)

ww(w(u)) (3.14)

J (4)
uuuu(u) = (w′(u))4J̃ (4)

wwww(w(u))

The next step consists in finding the covariant derivatives of the currents. The only v

dependence comes from ϕ. We have

guv∇vJ
(1,1)
uu = − ~

12
(∇uR) (3.15)

guv∇vJ
(1,2)
uuu = − ~

24

(

∇2
uR
)

+
1

2
RJ (1,1)

uu

guv∇vJ
(2,1)
uuu = − ~

24

(

∇2
uR
)

+
1

2
RJ (1,1)

uu

guv∇vJ
(1,3)
uuuu = − ~

40

(

∇3
uR
)

+
1

2
(∇uR)J (1,1)

uu +
3

2
RJ (1,2)

uuu

guv∇vJ
(2,2)
uuuu = − ~

60

(

∇3
uR
)

+
1

2
RJ (1,2)

uuu +
1

2
RJ (2,1)

uuu

guv∇vJ
(3,1)
uuuu = − ~

40

(

∇3
uR
)

+
1

2
(∇uR)J (1,1)

uu +
3

2
RJ (2,1)

uuu

and, using (A.1) and (A.2) in appendix,

guv∇vJ
(1,4)
uuuuu = − ~

60

(

∇4
uR
)

+
1

2

(

∇2
uR
)

J (1,1)
uu + 2 (∇uR)J (1,2)

uuu + 3RJ (1,3)
uuuu

guv∇vJ
(2,3)
uuuuu = − ~

120

(

∇4
uR
)

+
1

2
(∇uR)J (2,1)

uuu +
1

2
RJ (1,3)

uuuu +
3

2
RJ (2,2)

uuuu

guv∇vJ
(3,2)
uuuuu = − ~

120

(

∇4
uR
)

+
1

2
(∇uR)J (1,2)

uuu +
1

2
RJ (3,1)

uuuu +
3

2
RJ (2,2)

uuuu
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guv∇vJ
(4,1)
uuuuu = − ~

60

(

∇4
uR
)

+
1

2

(

∇2
uR
)

J (1,1)
uu + 2 (∇uR)J (2,1)

uuu + 3RJ (3,1)
uuuu

guv∇vJ
(1,5)
uuuuuu = − ~

84

(

∇5
uR
)

+
1

2

(

∇3
uR
)

J (1,1)
uu +

5

2

(

∇2
uR
)

J (1,2)
uuu

+5 (∇uR)J (1,3)
uuuu + 5RJ (1,4)

uuuuu

guv∇vJ
(2,4)
uuuuuu = − ~

210

(

∇5
uR
)

+
1

2

(

∇2
uR
)

J (2,1)
uuu + 2 (∇uR)J (2,2)

uuuu

+
1

2
RJ (1,4)

uuuuu + 3RJ (2,3)
uuuuu

guv∇vJ
(3,3)
uuuuuu = − ~

280

(

∇5
uR
)

+
1

2
(∇uR)J (1,3)

uuuu +
1

2
(∇uR)J (3,1)

uuuu

+
3

2
RJ (2,3)

uuuuu +
3

2
RJ (3,2)

uuuuu

guv∇vJ
(4,2)
uuuuuu = − ~

210

(

∇5
uR
)

+
1

2

(

∇2
uR
)

J (1,2)
uuu + 2 (∇uR)J (2,2)

uuuu

+
1

2
RJ (4,1)

uuuuu + 3RJ (3,2)
uuuuu

guv∇vJ
(5,1)
uuuuuu = − ~

84

(

∇5
uR
)

+
1

2

(

∇3
uR
)

J (1,1)
uu +

5

2

(

∇2
uR
)

J (2,1)
uuu

+5 (∇uR)J (3,1)
uuuu + 5RJ (4,1)

uuuuu

For the currents J
(s)
u...u, which are the linear combinations of J

(n,m)
u...u we obtain

guv∇vJ
(2)
uu =

~

12
(∇uR) (3.16)

guv∇vJ
(3)
uuu = 0 (3.17)

guv∇vJ
(4)
uuuu =

16

5
q2 (∇uR)J (2)

uu (3.18)

guv∇vJ
(5)
uuuuu =

80

7
q2 (∇uR)J (3)

uuu (3.19)

For s = 6:

guv∇vJ
(6)
uuuuuu =

(

−320

21

(

∇2
uR
)

∇uJ (2)
uu +

128

21
(∇uR)∇2

uJ (2)
uu +

128

21

(

∇3
uR
)

J (2)
uu

)

q4

+
80

3
(∇uR)J (4)

uuuuq2 (3.20)

Now, according to [9], after the right hand side is expressed in terms of covariant

quantities, terms proportional to ~ are identified as anomalies in the following way. One

assumes that there is no anomaly in the conservation laws of covariant currents, i.e that

the terms proportional to ~ do not appear in ∇µJµu...u. Since ∇µJµu...u = guv∇vJuu...u +

guv∇uJvu...u, one relates terms proportional to ~ in the u derivative of the trace (vu...u

components) with the terms proportional to ~ in the v derivative of uu...u components of

the currents.

For the covariant energy momentum tensor J
(2)
µν , the trace is Tr(J (2)) = 2gvuJ (2)

vu.

Thus, (3.16) reproduces the well known trace anomaly Tr(J (2)) = − c~

12R, where in our case

c = 2 (for the missing factor of −2π see the footnote in section 2.2).
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We see that the terms that carry explicit factors of ~ cancel out in eqs. (3.17)-(3.20).

This implies the absence of ~ in the trace, and consequently the absence of the trace

anomaly.

4. Trace anomalies

In the previous section the covariant form of the current does not give rise to any trace

anomaly. This is at variance with ref. [9], where the fourth order covariantized current

exhibits a trace anomaly which is a superposition of three terms: ∇µ∇νR, gµν�R and

gµνR2. It is therefore important to clarify whether these are true anomalies or whether

they are some kind of artifact of the regularization used to derive the results.

In the framework of the effective action introduced in the previous section (see (3.1)),

the anomaly problem can be clarified using cohomological (or consistency) methods. Such

methods were applied for the first time to the study of trace anomalies in [55, 57]. Subse-

quent applications can be found in [56, 58] and more recently in [59, 60]. The consistency

conditions for trace anomalies are similar to the Wess-Zumino consistency conditions for

chiral anomalies and are based on the simple remark that, if we perform two symmetry

transformations in different order on the one-loop action, the result must obey the group

theoretical rules of the transformations. In particular, since Weyl transformations are

Abelian, making two Weyl transformations in opposite order must bring the same result.

Although this explains the geometrical meaning of the consistency conditions, proceeding

in this way is often very cumbersome. The problem becomes more manageable if we trans-

form it into a cohomological one. This is simple: just promote the local transformation

parameters to anticommuting fields (ghost). The transformations become nilpotent and

define a coboundary operator.

In this section we will consider, for simplicity, the possible anomalies of the fourth order

current J
(4)
µνλρ which couples in the action to the background field B

(4)
µνλρ ≡ Bµνλρ, both

being completely symmetric tensors. The relevant Weyl transformations are as follows.

The gauge parameters are the usual Weyl parameter σ and new Weyl parameters τµν

(symmetric in µ, ν). The variation δτ acts only on Bµνλρ (see [52])

δτBµνλρ = gµν τλρ + gµλ τνρ + gµρ τνλ + gνλ τµρ + gνρ τµλ + gλρ τµν (4.1)

while δσ acts on gµν , τµν and Bµνλρ in the following way

δσgµν = 2σ gµν (4.2)

δστµν = (x − 2)σ τµν

δσBµνλρ = xσ Bµνλρ

where x is a free numerical parameter. The transformation (4.3) of τ and B are required

for consistency with (4.1). The actual value of x turns out to be immaterial.

Now we promote σ and τ to anticommuting fields:

σ2 = 0

τµν τλρ + τλρ τµν = 0

σ τµν + τµν σ = 0
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It is easy to verify that

δ2
σ = 0, δ2

τ = 0, δσ δτ + δτ δσ = 0

Therefore they define a double complex.

Integrated anomalies are defined by

δσΓ(1) = ~ ∆σ, δτΓ
(1) = ~ ∆τ , (4.3)

where Γ(1) is the one-loop quantum action and ∆σ,∆τ are local functional linear in σ and

τ , respectively. The unintegrated anomalies, i.e. the traces T µ
µ and J (4)µ

µλρ are obtained

by functionally differentiating with respect to σ and τλρ, respectively.

By applying δσ, δτ to the eqs. (4.3), we see that candidates for anomalies ∆σ and ∆τ

must satisfy the consistency conditions

δσ ∆σ = 0 (4.4)

δτ ∆σ + δσ ∆τ = 0 (4.5)

δτ ∆τ = 0 (4.6)

i.e. they must be cocycles. We have to make sure that they are true anomalies, that is that

they are nontrivial. In other words there must not exist local counterterm C in the action

such that

∆σ = δσ

∫

d2xC (4.7)

∆τ = δτ

∫

d2xC (4.8)

If such a C existed we could redefine the quantum action by subtracting these counterterms

and get rid of the (trivial) anomalies.

We start by expanding candidate anomalies as linear combinations of curvature invari-

ants3

∆σ =

∫

d2x
√−g

11
∑

i=2

ci Ii (4.10)

∆τ =

∫

d2x,
√−g

3
∑

k=1

bk Kk (4.11)

3The fact that we are in 2 spacetime dimensions reduces greatly the number of curvature invariants,

such as those in (4.12). Useful relations valid in 2 dimensions are

Rµνλρ =
1

2
R (gµλ gνρ − gµρ gνλ) (4.9)

Rµν =
1

2
gµν R

δσR = −2R σ − 2�σ
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where Ii are linear in Bµνλρ and σ:

I1 = σR (4.12)

I2 = Bµνλρ ∇µ∇ν∇λ∇ρσ

I3 = Bµν R ∇µ∇νσ

I4 = Bµν ∇µ∇ν�σ

I5 = Bµν ∇µ∇νRσ

I6 = B �R σ

I7 = B R2 σ

I8 = Bµν ∇µ R∇νσ

I9 = B R �σ

I10 = B gµν ∇µR ∇νσ

I11 = B �
2σ

(Bµν = Bµνλρgλρ, B = Bµνgµν). The term I1 corresponds to the usual anomaly of the

energy-momentum trace (which is consistent and nontrivial). Therefore in the sequel we

disregard it and limit ourselves to the other terms which contain 4 derivatives. Similarly

Kk are independent curvature invariants that are linear in τµν and contain 4 derivatives:

K1 = ∇µ∇νR τµν (4.13)

K2 = R2 τ

K3 = �R τ

where τ = gµν τµν .

Now we apply the consistency condition (4.4) to ∆σ in the form (4.10). We obtain

δσ∆σ =
11
∑

i=2

12
∑

j=1

ciAij

∫

d2x
√−gJσσ

j = 0 (4.14)

where the variations δσIi are expressed as linear combinations of terms Jσσ
j

Jσσ
1 = Bµν R σ∇µ∇νσ (4.15)

Jσσ
2 = Bµν ∇µR σ∇νσ

Jσσ
3 = B R σ �σ

Jσσ
4 = B gµν ∇µR σ ∇νσ

Jσσ
5 = Bµνλρ σ∇µ∇ν∇λ∇ρσ

Jσσ
6 = Bµνλρ ∇µσ ∇ν∇λ∇ρσ

Jσσ
7 = Bµν σ∇µ∇ν�σ

Jσσ
8 = Bµν ∇µσ ∇ν�σ

Jσσ
9 = Bµν

�σ∇µ∇νσ

Jσσ
10 = Bµν gλρ ∇λσ∇µ∇ν∇ρσ
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Jσσ
11 = B σ �

2σ

Jσσ
12 = B gµν ∇µσ∇ν�σ

with coefficients given by

Aij =







































0 0 0 0 x − 6 −10 0 0 0 5 0 0

x − 6 0 0 0 0 0 0 0 −2 0 0 0

0 0 0 0 0 0 x − 6 −6 2 0 0 1

2 6 0 −1 0 0 2 0 0 0 0 0

0 0 2 4 0 0 0 0 0 0 2 0

0 0 4 0 0 0 0 0 0 0 0 0

0 x − 6 0 0 0 0 0 2 0 0 0 0

0 0 x − 6 0 0 0 0 0 0 0 0 0

0 0 0 x − 6 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 x − 6 −4







































(4.16)

This gives a homogeneous system of equations for c2, . . . , c11

11
∑

i=2

ciAij = 0 , j = 1, . . . , 12 (4.17)

The solution can be expressed in terms of 3 free parameters which we take to be c9, c10,

c11. We have

c2 = 0 (4.18)

c3 = −2 (c10 − 2c11)

c4 = −2 (c10 − 2c11)

c5 = (c10 − 2c11)(x − 6)

c6 = −1

2
c11(x − 6)

c7 =
1

4
(x − 6)(c11 − c9)

c8 = −6 (c10 − 2c11)

Now we plug this solution (4.18) back into (4.10) and apply the consistency condi-

tion (4.5)

δτ∆σ + δσ∆τ = δτ

(

∫

d2x
√−g

12
∑

i=2

ciIi

)

+ δσ

(

∫

d2x
√−g

3
∑

k=1

bkKk

)

=

∫

d2x
√−g

9
∑

j=1

(

11
∑

i=9

ciA
τσ
ij +

3
∑

k=1

bkA
στ
kj

)

Jτσ
j = 0 (4.19)

Here the result of the variations is expressed as linear combinations of the curvature in-

variants denoted by Jτσ
j :

Jτσ
1 = τµν ∇µ∇ν�σ (4.20)

Jτσ
2 = R τµν ∇µ∇νσ
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Jτσ
3 = τµν ∇µR∇νσ

Jτσ
4 = τµν ∇µ∇νR σ

Jτσ
5 = τ R2 σ

Jτσ
6 = τ �

2σ

Jτσ
7 = τ R �σ

Jτσ
8 = τ gµν ∇µR ∇νσ

Jτσ
9 = τ �R σ

The coefficients in the result of the δτ variation in (4.19) are

Aτσ
ij =







0 0 0 0 −2(x − 6) 0 8 0 0

−12 −12 −36 6(x − 6) 0 −2 −2 2 x − 6

24 24 72 −12(x − 6) 2(x − 6) 12 4 12 −6(x − 6)






(4.21)

and the coefficients in the δσ variations are

Aστ
kj =







2 2 6 6 − x 0 0 0 −1 0

0 0 0 0 6 − x 0 4 0 0

0 0 0 0 0 2 2 4 6 − x






(4.22)

Thus, we have obtained a system of 9 equations, which we use to express b1, b2, b3 in terms

of c9, c10, c11

b1 = 6c10 − 12c11 (4.23)

b2 = 2c11 − 2c9

b3 = c10 − 6c11

Since ∆τ does not depend on Bµνλρ, the consistency condition (4.6) is satisfied trivially.

In summary, using conditions (4.4) and (4.5), the form of the anomalies is reduced to

∆σ =

∫

d2x
√−g

11
∑

j=9

12
∑

i=1

cj Mσ
ji Ii (4.24)

∆τ =

∫

d2x
√−g

11
∑

j=9

3
∑

k=1

cj M τ
jk Kk

where

Mσ
ji =







0 0 0 0 0 6−x
4 0 1 0 0

0 −2 −2 x − 6 0 0 −6 0 1 0

0 4 4 −2(x − 6) 3 − x
2

x−6
4 12 0 0 1






(4.25)

and

M τ
jk =







0 −2 0

6 0 1

−12 2 −6






(4.26)
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Now, we check whether the anomalies ∆σ and ∆τ are trivial. The most general coun-

terterm C is a linear combination

C =

∫

d2x
√−g

7
∑

j=5

dj Cj (4.27)

of the following curvature invariants

C5 = Bµν ∇µ∇νR (4.28)

C6 = B �R

C7 = B R2

These are the only possible terms if we take into account partial integrations. Variations

of δσ and δτ of C can be expressed as linear combinations of terms Ii and Kk respectively

δσC =

∫

d2x
√−g

7
∑

l=5

12
∑

i=1

dl A
′

li Ii (4.29)

δτC =

∫

d2x
√−g

7
∑

l=5

3
∑

k=1

dl A
′′

lk Kk

with coefficients given by

A′

li =







0 −2 −2 x − 6 0 0 −6 0 1 0

0 0 0 0 x − 6 0 0 −2 −4 −2

0 0 0 0 0 x − 6 0 −4 0 0






(4.30)

and

A′′

lk =







6 0 1

0 0 8

0 8 0






(4.31)

If we take

d5 = c10 − 2c11 (4.32)

d6 = −c11

2

d7 =
c11

4
− c9

4

both triviality conditions, (4.7) and (4.8), are satisfied.

Our conclusion is therefore that not only the trace anomalies found in [9] are trivial,

but that there cannot be any anomaly whatsoever in J (4)µ
µλρ.

5. Conclusion

In this paper we have applied the trace anomaly method to the calculation of moments of

Hawking radiation. We have shown that, as suggested in [9] they can be in fact explained
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as the fluxes of a W∞ algebra of chiral currents, which we have constructed out of two chiral

scalar field. The non-trivial flux of these currents is generated by their response under a

conformal transformation (generalized Schwarzian derivative). Then we have constructed

the covariant and Minkowski version of these currents and verified that up to order 6 they

are not plagued by any trace anomaly, except for s = 2, i.e. for the energy momentum

tensor. At this point we have set out to prove that in fact there cannot exist any trace

anomaly for higher spin currents. We have succeeded in doing so for the fourth order

current and we believe this is true also for higher order ones4.

The results of this paper are limited to two dimensions. We do not know whether they

actually extend to four dimensions. The method of diffeomorphism anomaly to calculate

the Hawking radiation, [3], seem to be more general than the trace anomaly method adopted

here. It would therefore be very interesting to investigate the use of the latter in order

to calculate the higher moments of the Hawking radiation with the same criteria we have

used in this paper.
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A. The sixth order current

Here we write down the order 5 and 6 terms corresponding to (3.7):

J (1,4)
uuuuu = −3J (1,1)

uu Γ3 − 9J (1,2)
uuu Γ2 − 4TJ (1,1)

uu Γ − 6J (1,3)
uuuuΓ +

T~ (∂uT )

10
+

~
(

∂3
uT
)

30
(A.1)

+j(1,4)
uuuuu − (∂uT )J (1,1)

uu − 4TJ (1,2)
uuu

J (2,3)
uuuuu = −3

2
J (1,1)

uu Γ3 − 3J (1,2)
uuu Γ2 − 3

2
J (2,1)

uuu Γ2 − TJ (1,1)
uu Γ − J (1,3)

uuuuΓ − 3J (2,2)
uuuuΓ

−T~ (∂uT )

30
+

~
(

∂3
uT
)

60
+ j(2,3)

uuuuu − TJ (2,1)
uuu

J (3,2)
uuuuu = −3

2
J (1,1)

uu Γ3 − 3

2
J (1,2)

uuu Γ2 − 3J (2,1)
uuu Γ2 − TJ (1,1)

uu Γ − J (3,1)
uuuuΓ − 3J (2,2)

uuuuΓ−T~ (∂uT )

30

+
~
(

∂3
uT
)

60
+ j(3,2)

uuuuu − TJ (1,2)
uuu

J (4,1)
uuuuu = −3J (1,1)

uu Γ3 − 9J (2,1)
uuu Γ2 − 4TJ (1,1)

uu Γ − 6J (3,1)
uuuuΓ +

T~ (∂uT )

10
+

~
(

∂3
uT
)

30

+j(4,1)
uuuuu − (∂uT )J (1,1)

uu − 4TJ (2,1)
uuu

4So it is not very appropriate to use the term ”trace anomaly method”. We should rather use the term

”Schwarzian derivative method”
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and

J (1,5)
uuuuuu = j(1,5)

uuuuuu + ~

(

2T 3

63
+

5

42

(

∂2
uT
)

T +
17

168
(∂uT )2 +

1

42

(

∂4
uT
)

)

(A.2)

−15

2
J (1,1)

uu Γ4 − 30J (1,2)
uuu Γ3 − 15TJ (1,1)

uu Γ2

−30J (1,3)
uuuuΓ2 − 5 (∂uT )J (1,1)

uu Γ − 30TJ (1,2)
uuu Γ

−4T 2J (1,1)
uu −

(

∂2
uT
)

J (1,1)
uu − 5 (∂uT )J (1,2)

uuu − 10TJ (1,3)
uuuu − 10J (1,4)

uuuuuΓ

J (2,4)
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647 (2007) 482 [hep-th/0702199].

[18] H. Shin and W. Kim, Hawking radiation from non-extremal D1-D5 black hole via anomalies,

JHEP 06 (2007) 012 [arXiv:0705.0265].

[19] Q.-Q. Jiang, Hawking radiation from black holes in de Sitter spaces, Class. and Quant. Grav.

24 (2007) 4391 [arXiv:0705.2068].

[20] S. Das, S.P. Robinson and E.C. Vagenas, Gravitational anomalies: a recipe for Hawking

radiation, arXiv:0705.2233.

– 19 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD15%2C2752
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C95%2C011303
http://arxiv.org/abs/gr-qc/0502074
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C96%2C151302
http://arxiv.org/abs/hep-th/0602146
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C044017
http://arxiv.org/abs/hep-th/0606018
http://jhep.sissa.it/stdsearch?paper=04%282007%29068
http://arxiv.org/abs/hep-th/0612286
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C124004
http://arxiv.org/abs/hep-th/0701272
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C064015
http://arxiv.org/abs/0705.3494
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB799%2C60
http://arxiv.org/abs/0710.0453
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C045007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C045007
http://arxiv.org/abs/0710.0456
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C044018
http://arxiv.org/abs/hep-th/0606069
http://jhep.sissa.it/stdsearch?paper=10%282006%29025
http://arxiv.org/abs/hep-th/0606077
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC49%2C865
http://arxiv.org/abs/hep-th/0608080
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB647%2C200
http://arxiv.org/abs/hep-th/0701002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB651%2C58
http://arxiv.org/abs/hep-th/0701048
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C064029
http://arxiv.org/abs/hep-th/0701235
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB647%2C482
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB647%2C482
http://arxiv.org/abs/hep-th/0702199
http://jhep.sissa.it/stdsearch?paper=06%282007%29012
http://arxiv.org/abs/0705.0265
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C24%2C4391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C24%2C4391
http://arxiv.org/abs/0705.2068
http://arxiv.org/abs/0705.2233


J
H
E
P
0
5
(
2
0
0
8
)
0
7
1

[21] B. Chen and W. He, Hawking radiation of black rings from anomalies, arXiv:0705.2984.

[22] U. Miyamoto and K. Murata, On Hawking radiation from black rings, Phys. Rev. D 77

(2008) 024020 [arXiv:0705.3150].

[23] Q.-Q. Jiang, S.-Q. Wu and X. Cai, Anomalies and de Sitter radiation from the generic black

holes in de Sitter spaces, Phys. Lett. B 651 (2007) 65 [arXiv:0705.3871].

[24] W. Kim and H. Shin, Anomaly analysis of hawking radiation from acoustic black hole, JHEP

07 (2007) 070 [arXiv:0706.3563].

[25] K. Murata and U. Miyamoto, Hawking radiation of a vector field and gravitational

anomalies, Phys. Rev. D 76 (2007) 084038 [arXiv:0707.0168].

[26] J.-J. Peng and S.-Q. Wu, Covariant anomaly and Hawking radiation from the modified black

hole in the rainbow gravity theory, arXiv:0709.0167.

[27] Z.Z. Ma, Hawking radiation of black p-branes via gauge and gravitational anomalies,

arXiv:0709.3684.

[28] C.-G. Huang, J.-R. Sun, X.-N. Wu and H.-Q. Zhang, Gravitational anomaly and Hawking

radiation of brane world black holes, arXiv:0710.4766.

[29] J.-J. Peng and S.-Q. Wu, Covariant anomalies and Hawking radiation from charged rotating

black strings in Anti-de Sitter spacetimes, Phys. Lett. B 661 (2008) 300 [arXiv:0801.0185].

[30] X.-N. Wu, C.-G. Huang and J.-R. Sun, On gravitational anomaly and Hawking radiation near

weakly isolated horizon, arXiv:0801.1347.

[31] S. Gangopadhyay, Hawking radiation in Reissner-Nordstróm blackhole with a global monopole
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